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Abstract. In this paper we propose a phase-field model for analyzing the influence of evaporation on
Marangoni convection in liquid-vapor systems. The theoretical description is based on the Navier-Stokes
equation with extra terms responsible for describing the Marangoni effect, the heat equation with a supple-
mentary term responsible for describing evaporation phenomena, and the continuity equation. We report
on 2D simulations for both Marangoni instabilities in linear approximation and we compare the results
with the literature.

PACS. 68.03.Fg Evaporation and condensation – 47.54.+r Pattern selection; pattern formation – 47.20.Dr
Surface-tension-driven instability – 05.70.Np Interface and surface thermodynamics

1 Introduction

Phase-field models treat multi-phase systems with compli-
cate interface conditions adequately by tackling the prob-
lem continuously, inclusive of the interfacial region. This
continuous variation is realized with the help of an order
parameter − called phase-field function − which describes
the phases thermodynamically. In a classical formulation
the basic equations have to be written for each medium
and the boundary conditions must be explicitly tracked. In
diffuse-interface theory the basic equations − with supple-
mentary terms depending on variations of the phase-field
− are written only once for the whole system and interface
conditions don’t occur.

Proposed for the first time by Langer in an ad hoc man-
ner, the phase-field methodology has recently achieved
considerable importance in modeling solidification phe-
nomena [1–5], complex growths structures [6–8] and dy-
namic fracture [9]. Recently we have extended the phase-
field model for describing Marangoni convection (MC) in
incompressible layers [10–12], and now we intend to in-
clude evaporation in the phase-field simulations on MC.

In this paper we propose a phase-field model for an
evaporating fluid heated from below. We are studying a
liquid with its own vapor, a situation for which the natural
order parameter is the density. For the liquid-vapor system
being considered, one assumes the fluids are compressible,
with a deformable interface and the evaporating fluid far
from criticality (see Fig. 1). The system is bounded in
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Fig. 1. Sketch of the system under consideration: an evaporat-
ing liquid together with its own vapor. The system is heated
from below and the temperatures at the top and bottom are
maintained constant.

the vertical direction by two rigid and perfectly heat con-
ducting walls with fixed temperatures T (z = 0) = Tb

and T (z = 2) = Tt (the length is scaled at the liq-
uid depth d). Due to external heating, both Marangoni
instabilities can develop in the liquid-vapor system: the
long-wavelength instability induced by surface deflections
and the short-wavelength instability driven by a surface
tension gradient. A direct application of this model are
the experiments performed in microgravity. Consequently,
the gravitational force will be ignored in our simulations.
The final aim in this paper is to analyze the influence of
evaporation phenomenon on both Marangoni instabilities
in the frame of the phase-field model.



102 The European Physical Journal B

The paper is organized as follows: Section 2 presents
in detail the method adjusted for studying evaporation
with convection in liquid-vapor-systems. For realistic fluid
parameters, two-dimensional simulations on Marangoni
convection (MC) are reported in Section 3. Section 3.1
discusses MC in non-evaporative-systems with compress-
ible fluids. The influence of evaporation parameters on
Marangoni instabilities is analyzed in Section 3.2. Finally,
principal conclusions are summarized in Section 4.

2 Formulation and basic equations

For the phase-field model in evaporating compressible
fluids the appropriate order parameter is the density ρ.
For the stationary motionless state the density is as-
sumed to be ρ0(z = 0) = ρl at the liquid boundary and
ρ0(z = 2) = ρv (≈ 0) at the vapor boundary (see Fig. 2).
With the help of the density one can continuously ex-
press all the other system parameters, respectively, dy-
namic viscosities, thermal conductivity, heat capacity:
η = (ηv − ηl

ρv

ρl
)/(1 − ρv

ρl
) + (ηl − ηv) ρ

ρl
/(1 − ρv

ρl
), λ =

(λv − λl
ρv

ρl
)/(1 − ρv

ρl
) + (λl − λv) ρ

ρl
/(1 − ρv

ρl
), κ = (κv−

κl
ρv

ρl
)/(1 − ρv

ρl
) + (κl − κv) ρ

ρl
/(1 − ρv

ρl
), c = (cv−

cl
ρv

ρl
)/(1 − ρv

ρl
) + (cl − cv) ρ

ρl
/(1 − ρv

ρl
) (the index “l” de-

scribes the liquid parameters at z = 0 and the index “v”
describes the vapor parameters at z = 2).

Helmoltz free-energy functional is given by [1,2,13]:

F [ρ] =
∫

V

LdV, L = f(ρ, T ) +
K(T )

2
(∇ρ)2−µρ (1)

where f(ρ, T ) represents the free-energy density for the
homogeneous system (far from the interface), the sec-
ond term characterizes the interfacial energy and µ is a
Lagrange multiplier (the chemical potential). It ensures
mass conservation and results from the Euler-Lagrange
equation:

µ =
∂f

∂ρ
−∇ · (K∇ρ). (2)

In stationary conditions an interfacial mass exchange does
not exist between the two phases, which means the free-
energy density can be chosen as a symmetric “double-well”
potential

f0(ρ) =
C

2

(
ρ

ρl
− ρv

ρl

)2(
ρ

ρl
− 1

)2

(3)

with two local minima: one corresponding to ρ = ρv

(≈ 0), for the vapor state and the second one to ρ = ρl,
for the bulk in the liquid phase. (In Fig. 3 the density
was scaled with the liquid density at bottom boundary
ρl and consequently the two minima occur on ρ = 0 and
ρ = 1, respectively.) Plotting now the thermodynamic
pressure p(ρ, T ) = ρ∂f

∂ρ − f(ρ, T ) versus unit volume
(1/ρ) for the stationary state, one obtains the Van der
Waals curve illustrated in Figure 4, which has at the

 

Fig. 2. Density distribution versus z for the stationary state.
The diffuse interface between the liquid and the vapor is situ-
ated at z = 1.

Fig. 3. Free-energy density representation versus density ρ/ρl

for stationary and perturbated states.

Maxwell construction p = 0. A difference between the
free-energy densities corresponding to the two minima
has to appear in the disturbed states in order to allow for
evaporative/condensation phenomena at the interface.
We model this vertical relative shift of the minima
through a supplementary temperature dependant term:

f(ρ, T ) = f0(ρ) + r

(
ρ

ρl
− 1

)
(T − T0(z)), (4)

where T0(z) describes the temperature distribution of the
system in stationary conditions and r is a positive constant
which will be discussed later. As one can see from Figure 3,
for T = T0(z) the density of the free-energy is symmetri-
cal, no evaporation/condensation phenomena has set in.
If small perturbations induce T > T0 the minimum corre-
sponding to the vapor state is diminished. Therefore the
system becomes more stable in the gas state than in the
liquid state and evaporation sets in. Vice-versa, for T < T0

the free-energy density in the gas becomes larger than the
free-energy density in the liquid and the system condenses.

In many previous works K from the functional (1) is
assumed to be constant. But we have previously shown
in [10], in order to describe both Marangoni instabil-
ities it is necessary to consider K dependent on tem-
perature: K = K0 − KTT (KT > 0). The argument
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Fig. 4. The pressure curve for stationary state. The unit vol-
umes for liquid and vapor phase correspond to vl = 1 and
vv = ∞, respectively.

consists of the fact that K is connected to the surface-
tension coefficient [14,15]

σ =
∫ +∞

−∞
K

(
∂ρ0

∂z

)2

dz

and the short-wavelength instability is driven by the gra-
dient of the surface tension. Using the Lagrangian for-
malism (for minimizing the free-energy functional for the
equilibrium state), we obtain a new force component in
the Navier-Stokes equation [10]:

ρ
dv

dt
= ∇L−∇ · (K∇ρ⊗∇ρ) + ∇ · (η∇v)

+∇(λ∇ · v) +
1
2
KT∇T (∇ρ)2, (5)

where “⊗” denotes the dyadic product and has as
components:

(∇ρ⊗∇ρ)ij =
∂ρ

∂xi

∂ρ

∂xj
.

The last term from (5) represents the trigger for short-
wavelength instability and assures in the limit of sharp
and rigid interfaces the fulfillment of classical interfacial
conditions. For incompressible media we have replaced the
velocity from (5) with the stream-function

v =
∂ψ

∂z
i − ∂ψ

∂x
k.

and we have dropped the gradient term ∇L applying the
curl operator on equation (5) [10–12]. For the model with
compressible media developed in this paper there is no
stream-function and we need the gradient term ∇L in (5).
So now one replaces L = f(ρ) − ρ∂f

∂ρ + K(T )
2 (∇ρ)2 + ρ∇ ·

(K∇ρ) into (5) leading to a more compact form:

ρ
dv

dt
= −∇p+ ρ∇ (∇ · (K∇ρ)) + ∇ · (η∇v)

+∇(λ∇ · v), λ ≈ η

3
. (6)

The above equation coincides with that derived in [14] by
Jasnow using an Hamiltonian (canonical) formalism and

can also be found in [13] applied there to the problem of
film spreading on a solid surface. For the energy equation
we consider a supplementary term responsible for describ-
ing the latent heat upon evaporative/condensation phe-
nomena [6]

ρc
dT

dt
= ∇ · (κ∇T ) + L

∂ρ

∂t
, (7)

(L−the latent heat per unit volume (J/kg)). For justifying
the last term in (7) one defines the mass flux: J = ρv
which has to satisfy the continuity equation:

∂ρ

∂t
= −∇ · J .

One integrates the equation (7) through the interface in
z direction (from liquid to vapor). The integration is per-
formed on a small box enclosing a portion of the interface
in such a way that the top of the box is above the surface
at height ε and the bottom is situated at the same distance
below the surface. In the limit of sharp interfaces, taking
ε → 0 one can neglect the integral terms which contain
the volume forces (for example the integral term which
contains the left term from Eq. (7)). Now one introduces
in (7) the mass flux J from the continuity equation in-
dicated above. Thus one obtains the boundary conditions
which describe the jump of normal heat fluxes [16]

κv
∂Tv

∂z
= κl

∂Tl

∂z
+ LJn,

where the last term represents the heat flux caused by
evaporation.

Summarizing, the fundamental set of equations for
MC with evaporation in liquid-vapor systems contains
the Navier-Stokes equation (6), the heat equation (7)
and the continuity equation for spatiotemporal evolution
of the density:

∂ρ

∂t
+ ∇ · (ρv) = 0. (8)

3 Numerical results

We scale the variables by using d, d2/χl, χl/d, (T −
Tt)/(Tt − Tb), ρl, ηl, cl, κl as units for the length,
time, velocity, temperature, density, viscosity, heat ca-
pacity and thermal conductivity where χ represents
the thermal diffusivity. The following non-dimensional
parameters appear: Pr = ηl

ρlχl
the Prandtl number

of the liquid, Ca =
√K0Cρld

2ηlχl
−the capillary number,

M = KT

√K0Cρl

2K0

(Tt−Tb)d
ηlχl

−the Marangoni number, 
 =
ρl

2d

√
K0
C −the width of the interface, E = L

cl(Tt−Tb)
−the

latent heat and R = rd2(Tt−Tb)
ηlχl

−the bias parameter. We
scale the system of equations (6)−(8) and we replace the
free-energy density from (4) into the pressure term −∇p
using the thermodynamic relation:

p(ρ, T ) = ρ
∂f

∂ρ
− f(ρ, T ).
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One becomes now:

ρ

Pr

dv

dt
= −Ca



ρ∇[2ρ3 − 3(1 + ρv)ρ2

+ (ρ2
v + 4ρv + 1)ρ− ρv(ρv + 1)] +R∇(T − T0)

+ ρ
∇∇ · [(Ca −MT )∇ρ+ ∇ · (η∇v) + ∇
(η

3
∇ · v

)
(9)

ρc
dT

dt
= ∇ · (κ∇T ) + E

∂ρ

∂t
(10)

0 =
∂ρ

∂t
+ ∇ · (ρv). (11)

There is no evaporation in the stationary state. That
means that the density profile ρ0(z) and the tempera-
ture distribution T0(z), computed numerically from equa-
tions (9) and (10), do not depend on E and R. We analyze
the linearized system (9)-(11), assuming for the small per-
turbations plane waves in horizontal direction:


 v(x, z, t)
T (x, z, t)
ρ(x, z, t)


 =


v0(z)
T0(z)
ρ0(z)


 +


v1(z)
T1(z)
ρ1(z)


 exp(ikx+ λt)

(12)
with the wavenumber k (assumed to be real value) and the
complex growth-rate λ. This leaves a system of equations
depending only on z with derivatives of third order. To
solve it we use a finite difference method [17], taking into
account the following boundary conditions:

vx1|z=0 = vx1|z=2 = 0, vz1|z=0 = vz1|z=2 = 0,

ρ1|z=0 = ρ1|z=2 = 0,
∂ρ1

∂z

∣∣∣∣
z=0

=
∂ρ1

∂z

∣∣∣∣
z=2

= 0,

T1|z=0 = T1|z=2 = 0.

In this way the system (9)-(11) is reduced to a linear
eigenvalue problem. For the numerical results presented in
this section, we have chosen the parameters for a water-
vapor system: Pr = 5.88, κv/κl = 0.035, ρv/ρl = 0.6 ×
10−3, ηv/ηl = 0.013, cv/cl = 0.5, L = 2.6 × 106 J/kg [18].
The parameter R is proportional to the coefficient r which
describes the difference between the free-energy density in
the liquid and in the vapor state. That means that r is
somehow connected to the energy absorbed/released dur-
ing evaporation/condensation phenomena and linked to
the latent heat L. Assuming the vapor is an ideal gas, one
can write for small differences T −T0 a linear dependency
between the pressure of the saturated vapor and temper-
ature as follows [16]:

ps(T ) = p0(T0) + pT (T − T0). (13)

In the above relation (p0, T0) is a point lying on the satu-
ration curve (e.q. T0 = 373 K and p0 = 1 atm for pure wa-
ter) and the gradient term pT is given by pT /p0 = L/RgT

2
0

(≈0.036 K−1 for pure water) with Rg−the universal gas
constant. Computing now the thermodynamic pressure for
the phase-field model one finds: p(ρ, T ) = p0(ρ)+r(T−T0).
So, one can clearly see that r plays the same role as the

gradient term pT from (13). Therefore we have chosen
in our simulations for the water-vapor systems r/C ≈
0.03 K−1. In Section 3.1 E and R are assumed to van-
ish, i.e., we analyze the non-evaporative problem in the
context of a compressible media. The influence of evapo-
ration on Marangoni instabilities is studied in Section 3.2,
where we perform a parametrical study on MC growth
rate with respect to E and R.

3.1 Non-evaporative systems

We have started with a very simplified situation for which
both fluids are assumed incompressible and the interfa-
cial region perfectly rigid. For this particular situation we
don’t need the spatiotemporal evolution equation for the
density (11) and we consider the variation of ρ0 given by
the analytical solution of equation (9) for the stationary
state. Assuming ρv ≈ 0 and Ca �MT one obtains:

ρ0(z) = 1/
[
1 + exp

(z − 1)



]
. (14)

Because the interface is rigid only short-wavelength insta-
bility (driven by a surface-tension-gradient) can develop,
an instability which appears when the Marangoni num-
ber M exceeds a threshold value Mcr. For the water-vapor
system heated from below we have plotted in Figure 5 the
critical Marangoni number Mcr and the critical wavenum-
ber kcr versus 1/
. One can observe how for sharp inter-
faces (namely for large values of 1/
) the results given
by the phase-field model converge to the results given by
the classical model [16]. The Marangoni number saturates
around Mcr ≈ 2800 that means in the terms of the usual
definition [19]

M ′ = MBi/(1 +Bi),

(Bi = κvdl

κldv
− the Biot number, with dl/dv = 1) a value

M ′
cr ≈ 95. The critical wavenumber has its limit at

kcr = 1.98 (Fig. 5b and inset in Fig. 5a). We note here
that the same representations Mcr and kcr = f(1/
) were
presented in our previous work [10] but for a silicon oil-
air system heated from below. The same mean result as
in the present paper appears: the saturation in the limit
of a sharp interface. However, the wavevector at onset is
now an increasing function of 1/
 contrary to our earlier
result. The slope of the critical wavenumber kcr with 1/

seems to be strongly connected with the system parame-
ters, especially with the dynamic viscosity ratio, ηgas/ηliq ,
which is much larger for the water-vapor system than for
the silicon oil-air system.

Now we come back to the model with compressible
fluids described by equations (9)−(11). For large val-
ues of the capillary number, i.e. for liquid depths above
100 µm, the liquid-vapor interface is quasi-non-deformable
and only the short-wavelength instability can occur. For
sharp interfaces one obtains k = 2 (see Fig. 6a). The
stream-lines representation for surface-tension-driven in-
stability together with the density perturbations can be
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Fig. 5. Dependencies of critical Marangoni number Mcr and
critical wavenumber kcr on the interface thickness 1/� for
surface-tension-driven instability. The plots follow from the
model with incompressible fluids and a perfectly rigid interface.

followed in the bidimensional (x, z) representation from
Figure 6b. The density perturbations are emphasized in
a grey scale, where the grey color means non-perturbated
state, the white regions describe the maxima of perturba-
tions and the black regions the minima of perturbations.
For compressible fluids there is no stream-function and
the stream-lines are computed directly from the velocity
components. Figure 6b shows a pattern specific for short-
wave instability consisting of two convective motions, one
developed in the liquid and the second one in the va-
por medium. Respecting density perturbations, Figure 6b
shows the location and the width of the interface. More
details of the interface deflections can be observed from
the 1D representation (versus z direction) illustrated in
Figure 7. Here we have plotted the density perturbations
caused by the short-wavelength instability in the rising
liquid. Convection in liquid pushes the liquid against the
interface which leads to an increase of the density at the
interface on the liquid side. The advection of vapor from
the top plate creates a lower density at the interface. Con-
sequently two peaks appear in (z, ρ1) representation given
by Figure 7, which are asymmetrical because the density
in the liquid is larger than the density in the vapor state.

For small capillary numbers (that means for layer
depths below 100 µm) the interface becomes deformable

Fig. 6. Growth rate, stream-lines and surface deformations
induced by Marangoni instability with short wavelength ob-
tained for the model with compressible fluids and quasi-non-
deformable interface (Ca = 4 × 104, � = 0.03, M = 2820).

Fig. 7. Density perturbations versus z caused by short-wave
instability in a liquid-vapor system with quasi-non-deformable
interface. The eigenvalue ρ1(z) corresponds to the regions
where the liquid moves upwards, i.e. for x = 2.2 from Figure 6b.

and surface deflections induce convection near k = 0 with
a long wavelength. In Figure 8a the growth rate for the
long-wavelength instability is presented. 2D convection
together with the interface deflections are illustrated in
Figure 8b. For this kind of instability the pattern con-
sists of large convection rolls developed in almost the
whole liquid-vapor system. In the regions where the liquid
streams upwards, the convection pushes the lower fluid
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Fig. 8. Growth rate, stream-lines and surface deformations for
Marangoni instability with long wavelength. The simulations
result from the model with compressible fluids and deformable
interface (Ca = 40, � = 0.2, M = 10).

Fig. 9. Density perturbations versus z for long-wave instability
developed in a liquid-vapor system with deformable interface.
The eigenvalue ρ1(z) corresponds to regions of a rising fluid,
i.e. for x = 19 from Figure 8b.

against the interface. Therefore, an increase of fluid den-
sity appears around the interfacial region, as observed in
Figure 9.

3.2 Evaporation

We shall now investigate the influence of evaporation. To
this aim we represent the growth rates for short- and long-

Fig. 10. Growth rates Reλ versus wavenumber k for MC with
short-wavelength, for different E and R parameters.

 

Fig. 11. Interface location and temperature perturbation ver-
sus z for a short-wave instability case (Ca = 4× 104, � = 0.03,
M = 2820, R = 50, E = 0.005). The eigenvalue T1(z) corre-
sponds to the regions where the liquid rises, i.e. for x = 2.2
from Figure 6b.

wavelength instabilities for different values of E and R.
From Figure 10 one can see how evaporation stabilizes
the short-wave instability. To explain that we show in
Figure 11 the distribution of the temperature perturba-
tion in the z direction along the liquid-gas system corre-
sponding to the regions where the liquid moves upwards,
for a single pair of values (E, R). (On the level of lin-
ear approximation the temperature perturbation does not
seem to depend on E and R). Figure 11 shows a posi-
tive temperature perturbation in the whole system inclu-
sive of the interface, outlined by the dotted lines. (The
two dotted lines correspond to the values 0.9 and 0.1 of
the liquid density, respectively.) As we have already ex-
plained in Section 2, a positive temperature perturbation
((T − T0) > 0) causes evaporation at the interface, so the
interface is cooled. Analogously, in the regions where the
liquid streams downwards condensation occurs and the in-
terface is heated. Consequently the Marangoni effects are
diminished. In conclusion, the surface-tension-driven in-
stability is stabilized by the occurrence of evaporation or
condensation at the interface.

Evaporation has almost the same effect on long-
wavelength instability, as shown in Figure 12. The
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Fig. 12. Same as Figure 10 but for MC with long-wavelength
triggered by surface deflections.

Fig. 13. Same as Figure 11 but for MC with long-wavelength
(Ca = 40, � = 0.2, M = 10, R = 0.03, E = 3). The eigenvalue
T1(z) corresponds to regions of a rising fluid, i.e. for x = 19
from Figure 8b.

explanation is similar: as in the previous case the temper-
ature perturbation is positive in the rising liquid (Fig. 13).
Therefore, evaporation occurs again in the interfacial re-
gion which cools the interface and attenuates the convec-
tion. However, when the evaporation becomes stronger,
the behavior of the curves Reλ = f(k) is different in com-
parison to the behavior indicated by Figure 10 for short-
wave instability. Now the growth-rate is reduced by evap-
oration but the instability is not really stabilized as in
the former case: The instability onset actually rests un-
changed, between k = 0 and k = 0.4 (for the parameters
corresponding to Fig. 12). This aspect can be explained
going back to equations (9)−(11). The long-wave instabil-
ity is a so-called type-IIs instability [20] which develops
between k = 0 and k = k1 (see Fig. 8a). The Marangoni
instability with long-wavelength develops in systems with
layer depths below 100 µm, a situation for which the in-
terface becomes deformable. For thin layers the bias pa-
rameter R becomes very small and does not influence the
behavior of the curves Reλ = f(k) represented in Fig-
ure 12. The only parameter which plays an essential role

in this behavior is the latent heat E. E appears in equa-
tion (10) multiplied by the time derivative ∂ρ/∂t. Using
the relation (12) one obtains: E ∂ρ1

∂t = Eλρ1. At the cut-
off point λ = 0 the term E ∂ρ

∂t vanishes from equation (10)
and consequently k1 rests unchanged. So k1 depends in our
model on system parameters and temperature difference
top-bottom, but k1 is not influenced by the parameters
which describe evaporation. Therefore due to evaporation
the long-wavelength instability will slowly grow, but the
unstable band [0, k1] will not change. However, one can
conclude that, for systems maintained in a temperature
gradient without interfacial mass exchange in a station-
ary state, evaporation has a “stabilizing effect” on both
Marangoni instabilities with short and long-wavelengths.

4 Conclusions

In this paper we developed a phase-field model for MC
in compressible media with interfacial mass exchange, a
problem which can be discussed in a natural way within
the framework of diffuse-interface theories. A numerical
code for the 2D problem in linear approximation was de-
veloped/used, which successfully describes the pattern for-
mation for both Marangoni instabilities.

The effects of evaporation on Marangoni convection
depend on the basic conditions. In [21] a volatile fluid
with a free rigid surface without external heating and with
strong evaporation at the interface is analyzed. For this
case, strong evaporation cools the interface with respect
to the top and bottom plates and induces surface-tension-
driven instability. In contrast with [21] we studied a two-
layer system with external heating and without evapora-
tion in the stationary state. For this case the presence
of evaporation at the liquid-vapor interface reduces and
stabilizes convective motion. In our paper the interface
was assumed to be deformable and therefore both types
of Marangoni convection can occur. The parametric study
shows that evaporation stabilizes short-wavelength insta-
bility and retards the long-wavelength instability. The
next step would be to include nonlinear effects in the
phase-field model and to analyze the spatiotemporal evo-
lution for Marangoni convection with evaporation in the
non-linear regime.

This research was supported by the European Union under the
network ICOPAC (Interfacial Convection and Phase Change)
HPRN-CT-2000-00136.
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141, 133 (2000)

5. L. Ratke, Metallurgical and Material Transactions A 34,
449 (2003)

6. R.J. Braun, B.T. Murray, J. Cryst. Growth 174, 41 (1997)
7. X. Tong, C. Beckermann, A. Karma, Q. Li, Phys. Rev. E

63, 061601 (2001)
8. L. Gránásy, T. Pusztai, J.A. Warren, J.F. Douglas, T.
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